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Abstract

Modelling is an important tool in simulating and partitioning evapotranspiration (ET).

To obtain realistic partitioning of ET, a hierarchical Bayesian (HB) method was used

to fit the Priestly–Taylor Jet Propulsion Laboratory (PT‐JPL) model against the

multi‐tower Flux Network (FLUXNET) datasets. Unique to the HB method is its ability

to exchange of information between sites and simultaneously estimate the species‐

and PFT‐level parameters. The results suggested that the sensitive parameters varied

at the both species and PFT levels. The parameter β (water control of soil evaporation)

exhibited relatively wide species‐and PFT‐level posterior distributions, indicating that

the original parameterization of soil moisture constraint may be problematic.

Generally, the model with parameters determined by the HB approach showed better

performance in predicting and partitioning ET than the original model, especially in

evergreen needleleaf forests, open shrublands, closed shrublands, and woody

savannas. To overcome the problem of parameter uncertainty (equifinality), direct

observations of different components of ET are urgently needed in future studies,

and assessments the extent to which the parameter uncertainties are reduced by

the use of additional data.
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1 | INTRODUCTION

Evapotranspiration (ET) is an important land surface process in clima-

tology and a nexus for terrestrial water, carbon, and energy cycles

(Jung et al., 2010). The individual components of ET include loss of

intercepted water (Ei), soil evaporation (Es), and canopy transpiration

(Ec). Whereas Es and Ei are abiotically controlled fluxes, Ec is strongly

influenced by plant physiology and environmental conditions. The abil-

ity to properly partition ET into its different components is critical for

understanding ecosystem water use processes and its response to cli-

mate change (Newman et al., 2006). Efforts to accurately estimate ET

and its components started in the 1970s with the development of new

technologies (i.e., microlysimeters, sap flow, eddy covariance, and

environmental stable isotope) and modelling (see Kool et al., 2014
wileyonlinelibrary.c
for a comprehensive review). Among these methods, modelling

provides a powerful tool and is becoming more and more popular

(Shugart, 2000). The Priestly–Taylor Jet Propulsion Laboratory

(PT‐JPL) model (Fisher, Tu, & Baldocchi, 2008), which has a process‐

based structure to partition total ET into its different components, is

physically sound and rigorous, and has been widely used in previous

studies due to its minimal requirements for ground‐based measure-

ments and its good performance (Feng et al., 2015; Michel et al.,

2016; Zhang et al., 2017; Zhu et al., 2016).

Despite these studies, there are still some insufficiencies in the

application of the PT‐JPL model. First, the PT‐JPL model is highly

complex with some ecophysiological parameters that may vary with

the environmental conditions, plant functional types (PFTs), and other

factors (Zhang et al., 2017). The widely used method to estimate
© 2018 John Wiley & Sons, Ltd.om/journal/hyp 3907
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parameters is to calibrate the mechanistic process model indepen-

dently for each site through simple Bayesian (SB) analysis (i.e.,

Samanta, Mackay, Clayton, Kruger, & Ewers, 2007; Zhu et al., 2014,

2016; Zhang et al., 2017). However, the SB method aggregated all

uncertainties into a single term (residual error), which makes it be sen-

sitive to measurement noise (Clark, 2005). Also, the observation data

at some sites may not be sufficient to allow adequate identification

of the parameter values. To overcome these shortages, we describe

a statistically rigorous method to estimate the parameters of the PT‐

JPL model across a wider range of biomes and environmental condi-

tions. Specifically, we implemented a hierarchical Bayesian (HB) frame-

work that couples the PT‐JPL model with multi‐tower FLUXNET

datasets in a single analysis, allowing exchange of information

between sites and hierarchically quantifying different sources of

uncertainty. Second, the parameters of a complex model can trade

off and yield acceptable simulations of total ET but with great uncer-

tainties in model's ET partitioning. This phenomenon that different

parameters fit observations equally well without the ability to distin-

guish, which parameters are better than others is termed as parameter

identifiability or equifinality within hydrologic community (Beven &

Freer, 2001). However, few attempts have been made to quantify

the uncertainty in model's ET partitioning caused by equifinality. This

may be attributed to the fact that it is still a challenge for many current

optimized algorithms (i.e., Metropolis–Hastings algorithm) to deal with

the equifinality problem (Turner, Sederberg, Brown, & Steyvers, 2013;

Zhu et al., 2018). Here, we used a population‐based genetic algorithm,

called the differential evolution Markov chain (DE‐MC; Storn & Price,

1997; Ter Braak, 2006), to implement the HB estimation and investi-

gate the influences of equifinality on model's ET partitioning. Finally,

although many attention have been given to the quantification of

the different components of ET in the global water cycle (Maxwell &

Condon, 2016; Wei et al., 2017; Fatichi & Pappas, 2017; Russell and

Biederman, 2017), studies based on long‐term performance of the

PT‐JPL model over a wide type of ecosystems under various climatic

conditions are still needed.

In this study, we applied the HB approach to calibrate the PT‐JPL

model against multi‐tower FLUXNET datasets in a single analysis. The

specific objectives were to: (a) simultaneously optimize the PT‐JPLmodel

parameters over different biomes using the HB method against multi‐

tower FLUXNET datasets, (b) quantify the uncertainty in model's ET

partitioning caused by equifinality only based on measured latent heat

flux data, and (c) reveal the variations of the ET partitioning across a wide

variety of biomes based on long‐term performance of the PT‐JPL model.
2 | DATA AND METHODOLOGY

2.1 | Data source

The recently released FLUXNET2015 dataset (December 2015,

http://fluxnet.fluxdata.org/data/fluxnet2015‐dataset/; Pastorello

et al., 2017) provides a continuous, high‐quality dataset of surface

heat fluxes and meteorological data across an extensive range of eco-

systems (Baldocchi et al., 2001, 2001; Agarwal et al., 2010). Following

the International Geosphere‐Biosphere Programme (IGBP)
classification, we selected the 65 eddy covariance towers from the

FLUXNET2015 dataset across a wide range of climates and biomes,

including croplands (CRO; 10 sites), deciduous broadleaf forests

(DBF; 11 sites), evergreen broadleaf forests (EBF; six sites), evergreen

needleleaf forests (ENF; 14 sites), grasslands (GRA; nine sites), mixed

forests (MF; five sites), open shrublands (OSH; two sites), savannas

(SAV; three sites), closed shrublands (CSH; two sites), and woody

savannas (WAS; three sites). The inputs to the PT‐JPL model are

monthly values aggregated from half‐hourly or hourly data from the

towers. The monthly latent heat flux (λET, W/m2) data were used to

optimize parameters in the model. Thus, the sites were selected based

on the requirement of a high fraction of original nongapfilled flux

observations. Only monthly values of measured fluxes and meteoro-

logical variables with less than 20% of gapfilled data were used in

our analysis. This yielded a total of 555 site‐years of eddy covariance

data, with the data coverage at each site ranging from at least 2 to

14 years. The observations span the period from 2001 to 2014. The

spatial distribution and the information about each site can be found

in Table S1 and Figure S1. The energy balance issue from eddy covari-

ance data remains largely unexplained and the best way to correct the

data are still under discussion (Barr, Morgenstern, Black, McCaughey,

& Nesic, 2006; Ershadi, McCabe, Evans, Chaney, & Wood, 2014;

Massman & Lee, 2002). The energy balance closure (the sum of sensi-

ble heat and latent heat against available energy) on daily and monthly

basis across the selected sites ranged from 0.55 (CH‐Dav) to 1.13

(DK‐Sor) and 0.52 (CN‐Din) to 1.10 (DK‐Sor; Table S2), respectively.

In addition, the energy balance for all sites combined was 0.83 on

monthly basis (Figure S2), which fell in the range of 0.78 to 0.85 for

the FLUXNET sites (Beer et al., 2010). Thus, the data quality at the

selected sites was relatively high and suitable for the purposes of

model performance evaluations. To account for the biased low latent

heat flux measurements due to the energy imbalance at the selected

sites, we used the Bowen ratio closure method to correct latent heat

flux values (Twine et al., 2000).

Time series of the enhanced vegetation index (EVI) and the normal-

ized difference vegetation index (NDVI), that are required for themodel

inputs, were extracted from moderate resolution imaging

spectroradiometer (MODIS) products (MOD13Q1) that provide

250 m spatial and 16 day temporal resolution. The MOD13Q1 data

are available online (https://lpdaac.usgs.gov/dataset_discovery/

modis/modis_products_table/mod13q1_v006; Didan, 2015). We used

an average of nine pixels covering and surrounding the flux tower to

acquire the EVI and NDVI values. The leaf area index (LAI), a potential

factor influencing ET segmentation, was extracted from MOD15A2H

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_ta

ble/mod15a2h_v006; Myneni, Knyazikhin, & Park, 2015) at 500 m spa-

tial and 8 day temporal resolution. We used linear interpolation to fill

the day gaps between successive EVI, NDVI, and LAI records, and then

integrated the daily data within a month into the monthly average.
2.2 | PT‐JPL model

The PT‐JPL (Fisher et al., 2008) is based on the Priestley–Taylor (PT)

equation (Priestley & Taylor, 1972) to estimate actual ET through

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spatial-distribution
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2h_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2h_v006
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using a number of ecophysiological constraint factors. In this model,

total ET is partitioned into canopy transpiration (λEc), soil evaporation

(λEs), and interception evaporation (λEi), which are defined as follows:

λEc ¼ 1 − fwetð ÞfgftfmαΔΔþ γRnc; (1)

λEs ¼ fwet þ fsm 1 − fwetð Þð ÞαΔ
Δ
þ γ Rns − Gð Þ; (2)

λEi ¼ fwetα
Δ
Δ
þ γRnc; (3)

where λ is the latent heat of vaporization (J kg−1); α is known as the PT

coefficient (1.26); Δ is the slope of the saturation water vapour pres-

sure curve (Pa K−1); γ is the psychrometric constant (Pa K−1); f wet is

the relative surface wetness (unitless); f g is the green canopy fraction

(unitless); f t is the plant temperature constraint (unitless); f m is the

plant moisture constraint (unitless); f sm is the soil moisture constraint

(unitless); G is the soil heat flux (W m−2); and Rnc is the net radiation

for the canopy (W m−2) and is given by Rnc = Rn − Rns, where Rn is

the net radiation (W m−2) and Rns is the net radiation for surface soil,

which is calculated as follows:

Rns ¼ Rn exp −kRn × LAIð Þ; (4)

where kRn is the extinction coefficient (unitless) for net radiation; and

LAI is the leaf area index (m2 m−2). Total ET is then

λET = λEc + λEs + λEi.

The ecophysiological constraint factors used as a proxy for plant

and soil water stress with values between 0 and 1 are given by the fol-

lowing:

fwet ¼ RH4; (5)

ft ¼ e
−

Ta−Topt
Topt

� �2

; (6)

fsm ¼ RHVPD=β; (7)

fg ¼ fAPAR
f IPAR

; (8)

fm ¼ fAPAR
fAPARmax

; (9)

where RH is relative humidity (%); Ta is the air temperature (°C); Topt is

the optimum plant growth temperature (°C); VPD is vapour pressure

deficit (kPa); β is the sensitivity for f sm to VPD (kPa); f APAR ( f IPAR)

is the fraction of absorbed (intercepted) photosynthetically active radi-

ation by canopy; and fAPARmax is the maximum f APAR. Note that as the

input dataset does not include f APAR, f IPAR, and LAI, and they are cal-

culated as follows (Fisher et al., 2008):

fAPAR ¼ m1EVIþ b1; (10)

fIPAR ¼ m2NDVIþ b2; (11)
LAI ¼ −
ln 1 − f IPARð Þ

kPAR
; (12)

where m1, b1, m2, and b2 are parameters; kPAR is the extinction coeffi-

cient (unitless) for photosynthetically active radiation; EVI is the

enhanced vegetation index; and NDVI is the normalized difference

vegetation index. Based on our previous studies (Zhang et al., 2017),

we found that three parameters (m1,β,Topt) were most sensitive to

the model across different biomes. Thus, the parameter vector associ-

ated with the PT‐JPL model has three components needed to be esti-

mated, namely, θ = (m1, β, Topt). The values of other parameters were

taken the same as the original model (i.e., kRn ¼ 0:6,kPAR = 0.5,

b1 = −0.048, m2 = 1.0, and b2 = −0.05; Fisher et al., 2008).

2.3 | HB model

Traditional approaches (e.g., SB), fitted the model on a site‐by‐site

basis, may tend to overestimate the species‐level variability, while fail-

ing to obtain the proper PFT‐level parameter values. To overcome

these shortages, we present a HB approach for fitting the PT‐JPL

model to all available flux tower dataset in a single analysis. The

advantages of this approach are that it can: (a) allow the information

from one flux tower site to exchange with other sites (Carlin, Clark,

& Gelfand, 2006); (b) simultaneously estimate the species‐ and/or

PFT‐specific parameters under varying environmental conditions; (c)

partition the uncertainty and variability into multiple processes (i.e.,

species‐to‐species variability, PFT‐to‐PFT variability, and observation

error), rather than lumping all variability into a single residual error

term; and (d) incorporate prior information for parameters into the

models, and improve model performance when data are limited.

The HB approach is composed of three primary components

(Wikle, 2003; Clark, 2005): (a) the data model, which specifies the like-

lihood of observed ET data given a process model and data parame-

ters; (b) the process model, which describes the biophysical

mechanisms governing ET (say the PT‐JPL model with process param-

eters), as well as process uncertainty associated with random effects;

and (c) the parameter model, which accounts for the uncertainty in

both the data and process parameters by assigning them prior distri-

butions. Ultimately, these three components are combined to gener-

ate posterior distributions of all unknown species‐ and/or PFT‐

specific parameters and the variance/covariance terms (Clark, 2005).

We describe each HB component in the context of the multi‐tower

flux dataset.

The data model: Let O f , s(t) correspond to the individual observa-

tion of ET at time t made on plant species s of plant functional type f .

There are m total PFTs, n f species in PFT f (=1, 2, …, m), n ¼ ∑
m

f¼1
nf total

species, and ts observations for species s (=1, 2, …, n). We assumed

that the ET measurements could be described by a normal distribution,

such that for observation at time t,

Of;s tð ÞeN Sf;s tð Þ; σ2
s

� �
; (13)

where “~” is read “is distributed as”; Nrepresents a normal distribution;

S f , s(t) is the predicted ET at time t (= 1, 2, …, ts) for plant species s of
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functional type f ; and σ2
s is the variance parameter that describes the

variability in the ET observation or measurement error for plant

species s.

The process model: The process model describes the predicted

ET, which was specified according to the PT‐JPL model (Fisher et al.,

2008):

Sf;s tð Þ ¼ fM Xf;s tð Þ; θs
� �

; (14)

where f M(·) represents the mechanistic process model, that is, PT‐JPL;

X f , s(t) is the model input data at time t for species s of functional type

f ; and θs is the unknown species‐specific parameter vector for species

s, that is, θs = (m1, s, βs, Topt, s).

The parameter model: The final stage of the HB approach was the

specification of the prior for the unknown parameters. Because the

model parameters varied on a species and PFT levels, hierarchical

and nested priors were chosen. Thus, under this framework, species‐

level parameters, which are directly related to single tower flux data,

are assumed to be nested within PFTs. Thus, a prior uncertainty in

the species‐level parameters can be described as follows:

θseN μθf ;Vf
� �

; (15)

where μθ f is the PFT‐level mean vector for functional group f (=1, 2,

⋯, m); and V f is the covariance matrix that describes the species‐to‐

species variability in parameter within the PFT f . The PFT‐level

parameters can differ between different functional group. Here, we

used a common background distribution to describe the between‐

PFT variability, such that,

μθfeN μθ;R
� �

; (16)

where μθ is the overall mean parameter vector for all PFTs; R is the

parameter covariance matrix that describes the PFT‐to‐PFT

variability.

Finally, we must specify distributions for the hyperprior

parameters (i.e., μθ, V f , R, and σ2
s ) to complete the model hierar-

chy. Because we do not have any prior information of the overall

mean parameter values ( μθ), independent and relatively

noninformative (diffuse) priors were employed for them; that is,

we used normal densities with large variances, μθeN 0; τ0I3ð Þ with

0 being three‐dimensional zero vectors, τ0 = 1000 and I3 being

the rank three identity matrix. For the residual variance of mea-

surement error in Equation (13), because there is enough data

available to estimate them, we can just assume independent uni-

form priors (Gelman, 2006), p σ2
s

� �
∝ 1. For the covariance matrixes

of Equations 14 and 15, we propose a multivariate Jeffreys prior

density: p(V f ) ∝ |V f |
−(d + 1)/2and p(R) ∝ |R|−(d + 1)/2 where d = 3

is the number of dimensions. By combining the data, process,

and parameter models as defined above in Equations 13–16, we

derived the joint posterior as follows:
p θ1;⋯; θn;μθ1;⋯; μθm;μθ;σ2
1;⋯;σ2

n ;V1;⋯;Vm;RjO;X
� �

∝

∏
m

f¼1
∏
nf

s¼1
∏
ts

t¼1
NðOf;s tð ÞjfM Xf;s tð Þ; θs

� �
σ2
s

( )
likelihoodð Þ

× ∏
m

f¼1
∏
nf

s¼1
N θsjμθf ;Vf

� �( )
× ∏

m

f¼1
N μθf jμθ;R
� �( )

priorð Þ

× ∏
m

f¼1
Vfj j− dþ1ð Þ=2

( )
× Rj j− dþ1ð Þ=2 × N μθj0; τ20I3

� �
hyperpriorð Þ

(17)

The first distribution of Equation (17) is the likelihood, and the

middle two distributions are priors for model parameters. The remain-

ing three are noninformative hyperprior distributions.

2.4 | Implementing the HB model

Usually, the Metropolis–Hastings Markov Chain Monte Carlo (MCMC)

algorithms (Robert & Casella, 1999) are implemented to sample from

the joint posterior, and from these samples, one can calculate mea-

sures of centrality (e.g., mean, median, and mode), spread (e.g., credible

intervals, which are similar to confidence intervals), and correlations

between parameters. However, the Metropolis–Hastings (MH)‐based

approaches often suffer from problems related to proper initialization

and proposal density function, which may prevent the algorithm from

efficiently reaching convergence (Haario, Laine, Mira, & Saksman,

2006). In this study, we used the DE‐MC algorithm proposed by ter

Braak (2006) to implement the HB model. Compared with the

MH‐based approaches, the DE‐MC algorithm is more suitable to draw

inference on high‐dimensional models (Turner et al., 2013; Zhu et al.,

2018). In the DE‐MC method, N chains are run in parallel and the

proposals are generated on the basis of two randomly selected chains,

the difference of which is multiplied by a scaling factor, and added to

the current chain as follows:

Θp ¼ Θi þ υ ΘR1 −ΘR2ð Þ þ ε; (18)

where Θp is the proposed set for the unknowns, including all parame-

ters and variance terms (Clark & Bjønstad, 2004); ΘR1 and ΘR2 repre-

sent the randomly selected chains without replacement from the

population Θ−i (the population without the current chain Θi); ε is

drawn from a symmetrical distribution with a small variance compared

with that of the target, but with unbounded support, for example,

ε~N(0, b) with b small; and υ is the scaling factor that always take a

positive value and can be set to vary between [0.4, 1] (Roberts &

Rosenthal, 2001). The Metropolis ratio is then used to decide whether

to accept or reject the proposals (ter Braak, 2006).

2.5 | Assessment of analysis method performance

Five statistical measures are used to evaluate model performance in

this paper, including the coefficient of determination (R2), bias, relative

error (RE), root‐mean‐square error (RMSE), and the Nash–Sutcliffe

efficiency coefficient (NSE). R2 ranges between 0 and 1, with higher

values indicating a good simulation result; the NSE values range from

−∞ to 1, with NSE = 1 being the optimal value (Moriasi et al., 2007).
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The calculation of the statistical measures can be found in Zhu et al.

(2016).

A final characterization of model performance uses theTaylor dia-

gram (Taylor, 2001), which is especially useful in testing multiple

aspects of complex models (International Panel on Climate Change,

2001). Generally, the Taylor diagram characterizes a single point to

indicate three different statistical relationships between the “test”

field (simulation) and the “truth” field (observation). The statistics of

each point can be scored using,

S ¼ 2 1þ Rð Þ
σm=σoð Þ þ 1= σo=σmð Þ½ �2

; (19)

where S is the model skill metric bound by zero and unity (unity indi-

cates agreement with observations), R is the coefficient of determina-

tion, and σm and σo is the standard deviation of the simulation and

observation, respectively.
3 | RESULTS

In this section, we conducted two case studies to evaluate the perfor-

mance of the HB model in estimating the parameter values and quan-

tifying the partitioning of ET. The first study serves as a benchmark

experiment of the HB model based on synthetic ET datasets for which

all‐level parameter values are known. That is, we chose true values for

the hyperprior parameters μθ (mean) and R (variance) from their prior

distributions, and drew the true mean parameter values for each PFT

(μθ f , f = 1, 2, ⋯, 10) from the normal distribution N μθ;R
� �

. The true

species‐level parameters (θs, s = 1, 2, ⋯, 65) can then be drawn from

the normal distribution with mean μθ f and known true covariance

matrix V f ( f = 1, 2, ⋯, 10). Thus, the synthetic ET for each site were

generated from the PT‐JPL model using measured forcing data at the
FIGURE 1 Posterior distribution of the parameters at each site. Thin v
indicate interquartile range. The horizontal lines show the median paramet
parameter values used to generate the synthetic ET data
FLUXNET sites and true species‐level parameter values. All the param-

eter values used in generating the ET datasets are given in Tables S3

and S4. The second study explores the performance of the HB model

using the actual measured datasets at 65 FLUXNET sites (see details in

the data source subsection). In all numerical experiments, the number

of chains of the DE‐MC algorithm is set to be 800 and iteration to be

10,000, where the initial parameter values were randomly sampled

from the uniform distributions.
3.1 | Synthetic dataset

The posterior parameter distributions of the three sensitive parame-

ters on species and PFT levels given by the HB model using the syn-

thetic data are shown in Figures 1 and 2, respectively. The statistical

results characterized by the posterior medians and 90% credible inter-

vals (CIs) are summarized in Tables S3 and S4. Two main conclusions

can be drawn from the results. First, the posterior median parameter

values varied widely across different species and PFTs and the 90%

CIs of the posterior distributions include true parameter values at both

species and PFT levels (Figures 1 and 2), which indicates that the HB

model is able to identify the true values in the parameter space.

Second, the posterior distributions of the parameters, especially for

β, are relatively widely spread on the prior bounds at both species

and PFT levels (Figures 1 and 2). This is mainly caused by equifinality

(Franks, Beven, Quinn, & Wright, 1997), where different combinations

of parameters lead to the similar simulation accuracy in total λET with

potential uncertainties in its partitioning in different components.

To illustrate the influence of different combinations of parameters

on the simulation results of ET and its components, we used the

parameter sets obtained by the HB procedure to run the PT‐JPL

model. The monthly variation of water fluxes simulated with selected
ertical lines indicate 90% confidence interval and thick vertical lines
er value at each site. The red cross symbol “×” indicates the actual



FIGURE 2 Posterior distribution of the
parameters at PFT level. Thin vertical lines
indicate 90% confidence interval and thick
vertical lines indicate interquartile range. The
horizontal lines show the median parameter
value at each site. The red cross symbol “×”
indicates the actual parameter values used to
generate the synthetic ET data
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parameter sets (number = 60) from one crop ecosystem site (BE‐Lon)

are presented in Figure 3, as well as providing the synthetic observa-

tions. We can observe that the median values of simulated λET fluctu-

ated tightly with the synthetic observations during the whole study

period, and the 90% prediction intervals of simulated λET are relatively

narrow (Figure 3a). These indicate that the PT‐JPL model with the

multiple parameter sets obtained by the HB procedure can yield quite

similar satisfactory simulations in λET. However, the partitioning of

λET between λEc and λEs tended to be different with the different

parameter values, and showed relatively large uncertainties. The

median values of simulated λEc and λEs may also tend to deviate from

the true values (Figures 3b and 3c). Similar model performance is also

observed in other sites (see details in Figure S3). Here, we also use

two type synthetic observations (total ET and canopy transpiration)
FIGURE 3 Comparison between synthetically observed and simulated w
The cross symbol “×” indicates the synthetic water fluxes data, the solid c
corresponds to a simulation with one particular parameter set
to constrain the model parameters. The results indicated that the

parameters can be well updated compared with that constrained by

only using ET data, and the medians of simulated ET partitioning were

more comparable with the true values (Figure S4). However, direct

field observations of different components of ET partitioning are still

very sparse (Lawrence, Thornton, Oleson, & Bonan, 2007). Thus, spe-

cial attention must be paid to the parameter uncertainties when using

models, which were optimized only based on EC‐measured data to

partition ET into its different components.

To account for the impacts of parameter uncertainties on the

partitioning of ET, we evaluated the model's ET partitioning (i.e., λEc/

λET, λEs/λET, and λEi/λET) using the multiple combinations of parame-

ters rather than a single parameter set (i.e., the median values of pos-

terior parameter distributions, the parameter set that lead to the least
ater fluxes for one cropland site (BE‐Lon). (a) λET, (b) λEc, and (c) λEs.
ircle ‘•’ represents the median of set simulations, and one line



FIGURE 4 The posterior medians and 90% CIs of the simulation sets of ET partitioning using the synthetic ET data. (a) λEc/λET, (b) λEs/λET, and
(c) λEi/λET. The red cross symbol “×” indicates the observed true partitioning values across all site
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normalized root mean square error or maximum likelihood). Figure 4

shows the posterior medians and 90% CIs of simulated partitioning

using different parameter sets as well as the observed true values

across all sites. It was found that the observed true partitioning of

ET at most sites fell in the 50% CIs of simulated results, and exhibit

good relationships with the medians of simulated partitioning values

(linear regression slope = 0.77, 0.65, and 0.96 for observed vs simu-

lated values of λEc/λET, λEs/λET, and λEi/λET with R2 = 0.74, 0.66,

and 0.96, respectively; Figure S5). Thus, the HB approach presented

here provided us the opportunity to get the multiple combinations

of parameters that can fit the λETmeasurements satisfactorily. By
FIGURE 5 Posterior distribution of the parameters at each FLUXNET sit
represents the original parameter value
taking the parameter uncertainties into accounts, we can get reason-

able estimations about the posterior distributions of the ET

partitioning for different ecosystems. The synthetic test gives us con-

fidence in its estimations in ET partitioning for real‐world hydrological

problems. Hereafter, we called the simulations with multiple parame-

ter sets obtained by the HB model as the set simulation approach.

3.2 | In situ FLUXNET dataset

For the in situ FLUXNET datasets, the posterior parameter distribu-

tions on the species and PFT levels are shown in Figures 5 and 6,
e. The vertical bars indicate the 90% probability intervals; the dot line



FIGURE 6 Posterior distribution of the parameters at PFT level. The
vertical bars indicate the 90% probability intervals; the dot line
represents the original parameter value

FIGURE 7 Relationships between optimized Topt and (a) mean air
temperature, and (b) dynamic Topt across all sites
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respectively, as well as summarized in Tables S5 and S6 by posterior

medians and 90% probability intervals. The HB model estimations of

Topt and m1 were well informed by the EC latent heat flux data. This

was demonstrated by relatively narrow 90% CIs of posterior parame-

ter distributions, posterior medians that were quite different from the

corresponding prior means, and significant species‐ and PFT‐level dif-

ferences (Figures 5 and 6). Generally, the posterior median values of

m1 were high for crop and broad‐leaf forests (about 1.35; Figure 6b)

with a narrow species‐level variation range (around 0.92–1.48;

Figure 5b), whereas the posterior median values were slightly low

for ENF, MF, and SAV (from 0.41 to 0.87; Figure 6b) and varied widely

on species level (from 0.80 to 1.47; Figure 5b). This indicates that can-

opy types (i.e., needle‐leaf, broad‐leaf, leaf clumping, and orientations)

have significant impacts on the estimations of m1 (Gao, Huete, Ni, &

Miura, 2000). The posterior median values of Topt were low for the

MF and ENF (about 13°C; Figure 6c) with a narrow species‐level var-

iation range (from 11 to 19°C; Figure 5c), whereas the posterior

median values were relative high for the DBF, EBF, and SAV (from

26 to 29°C; Figure 6c) and exhibited large species‐level variation (from

16 to 29°C; Figure 5c). Moreover, the estimated species‐level Topt

exhibited good agreements with the respective growing mean annual

temperature (slope = 0.55 and intercept = 13.3 with R2 = 0.72;

Figure 7a) and that estimated dynamically as the air temperature of

the month with the highest NDVI, radiation and temperature and min-

imum VPD (hereafter named as dynamic method; Potter et al., 1993;

Fisher et al., 2008) (slope = 0.84 and intercept = 3.77 with R2 = 0.79;

Figure 7b), indicating that our optimized values are reasonable. On the

contrary, the parameter β remained widely spread across their prior

range of variation on both species and PFT levels at most sites (Fig-

ures 5a and 6a), indicating relatively larger uncertainties partly due

to equifinality.

Figure 8 and Table 1 compare the estimates of monthly λET using

the original model and the medians of the simulation sets against the

observed latent heat fluxes across all sites and PFTs. The temporal
variation of observed and simulated λET using the original model and

the set simulation approach at selected typical sites was illustrated in

Figures 9 and 10. We can observe that the model with the original

parameters performed well for the CRO, DBF, EBF, GRA, and MF

biomes (Figure 9), with R2 ranging from 0.69 to 0.97 and NSE ranging

from 0.58 to 0.95 (Table 1). However, the original model generally

tended to overestimate the monthly λETat some ENF (CA‐Man,

CA‐Qfo, CA‐TP3 and IT‐Lav), OSH (Mx‐Lpa), and WSA (ES‐LgS) sites,

with σnorm greater than 1.3 and NSE less than 0.5 (Figures 8 and 10).

Also, significant underestimations of the monthly λETby the original

model was found at two sites of the ENF biomes (CA‐Obs and FI‐

Sod) due to unrealistic estimations of parameter Topt. (Table 1 and

Figure 10c). On the contrary, the set simulation approach performed

better in matching the observations at most sites as indicated by lower

bias and RMSE (Table 1), σnorm more closer to one, greater values of

model skill metric and NSE (Figures 8, 9, and 10). Thus, the model

parameter uncertainty seems to be the main source of the disagree-

ments between the observed and simulated latent heat fluxes, and

the set simulation approach is effective in improving the model perfor-

mance at most sites.

Figures 11 and 12 showed the comparisons of partitioning of ET

using the original model and the set simulation approach at species

and PFT levels, respectively. Noticeably, the 90% CIs of the simulation

sets of ET partitioning at the CRO, DBF, EBF, GRA, and MF sites are



FIGURE 8 Statistical comparison of model performance using the original and optimized parameters at both (a) the species level and (b) the PFT
level

TABLE 1 The statistics showing the algorithm performance by using different parameter sets over different sites during the study period

Site ID PFT Site name

Original model Medians of set simulations

Bias R2 Slope Intercept RMSE RE NSE Bias R2 Slope Intercept RMSE RE NSE

1 CRO BE‐Lon 5.97 0.79 0.79 3.04 17.3 0.41 0.76 6.84 0.79 0.77 2.83 17.6 0.41 0.75

2 CRO CH‐Oe1 11.9 0.96 0.78 −1.32 16.3 0.34 0.83 11.1 0.95 0.80 −1.61 15.4 0.33 0.85

3 CRO DE‐Geb 5.76 0.85 0.80 0.89 13.7 0.41 0.82 5.16 0.86 0.82 0.72 13.0 0.39 0.83

4 CRO DE‐Kli 5.57 0.81 0.81 1.09 15.3 0.43 0.78 6.06 0.83 0.81 0.52 15.0 0.43 0.79

5 CRO FR‐Gri 11.7 0.94 0.76 −0.32 16.9 0.36 0.82 11.0 0.94 0.77 −0.46 16.2 0.35 0.83

6 CRO PA‐SPn −8.34 0.88 0.90 17.7 11.0 0.12 0.72 −4.71 0.86 0.84 19.4 9.04 0.10 0.81

7 CRO US‐ARM 5.69 0.70 0.75 6.38 17.3 0.36 0.66 5.75 0.69 0.75 5.93 17.7 0.37 0.64

8 CRO US‐Ne1 11.9 0.94 0.73 6.02 22.7 0.34 0.85 10.0 0.94 0.77 5.02 20.0 0.30 0.88

9 CRO US‐Ne2 7.88 0.90 0.74 8.48 21.6 0.35 0.85 7.05 0.91 0.77 7.27 20.1 0.33 0.87

10 CRO US‐Ne3 5.49 0.91 0.79 5.63 16.3 0.30 0.88 4.34 0.92 0.84 4.31 14.7 0.27 0.90

11 DBF AU‐How −3.43 0.84 0.85 18.51 13.4 0.14 0.83 2.32 0.86 0.92 5.98 12.4 0.13 0.85

12 DBF CA‐Oas 0.93 0.86 0.78 6.35 15.6 0.47 0.85 1.24 0.88 0.81 5.17 14.3 0.43 0.88

13 DBF DE‐Hai 2.13 0.89 0.93 0.52 10.9 0.30 0.89 1.92 0.90 0.94 0.42 10.9 0.30 0.89

14 DBF DE‐Lnf 0.27 0.93 0.89 3.34 8.86 0.26 0.93 0.08 0.95 0.93 2.22 7.22 0.21 0.95

15 DBF DK‐Sor 9.42 0.81 0.68 3.70 22.3 0.54 0.74 8.46 0.81 0.71 3.57 21.5 0.52 0.76

16 DBF FR‐Fon 9.55 0.90 0.86 −2.54 16.0 0.31 0.85 7.77 0.91 0.92 −3.40 14.4 0.28 0.87

17 DBF IT‐Col −8.39 0.91 0.99 8.81 15.6 0.34 0.87 −0.10 0.94 0.91 4.29 10.8 0.23 0.94

18 DBF IT‐Ro2 −4.75 0.75 0.68 22.9 25.6 0.45 0.73 −4.33 0.77 0.73 19.9 24.0 0.42 0.76

19 DBF US‐MMS −2.99 0.95 0.84 11.7 12.4 0.23 0.93 −1.55 0.96 0.90 6.89 9.95 0.18 0.96

20 DBF US‐Oho 4.94 0.91 0.73 11.1 20.3 0.34 0.86 3.01 0.91 0.77 10.4 18.5 0.31 0.89

21 DBF US‐UMB −3.27 0.91 0.94 5.84 12.2 0.31 0.91 −1.60 0.92 0.91 5.21 11.5 0.29 0.92

22 EBF AU‐Tum 8.18 0.84 0.81 3.58 17.2 0.27 0.79 4.40 0.90 0.98 −2.89 12.9 0.21 0.88

23 EBF BR‐Sa1 −2.16 0.93 0.93 9.93 4.76 0.05 0.91 −0.57 0.92 0.89 11.7 4.55 0.04 0.92

24 EBF BR‐Sa3 5.70 0.91 0.99 −4.86 6.99 0.07 0.72 6.15 0.89 1.09 −15.9 8.16 0.08 0.62

25 EBF CN‐Din 0.05 0.99 1.03 −1.64 3.74 0.06 0.98 2.06 0.98 1.00 −1.78 4.51 0.07 0.98

26 EBF FR‐Pue −7.16 0.51 0.91 10.7 28.2 0.68 0.15 6.15 0.55 0.65 8.31 21.9 0.53 0.49

27 EBF GF‐Guy 2.97 0.49 1.26 −33.5 14.5 0.13 −0.84 3.67 0.48 1.26 −33.6 14.7 0.13 −0.90

(Continues)
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TABLE 1 (Continued)

Site ID PFT Site name

Original model Medians of set simulations

Bias R2 Slope Intercept RMSE RE NSE Bias R2 Slope Intercept RMSE RE NSE

28 ENF CA‐Man −10.3 0.91 1.41 −0.83 18.1 0.66 0.46 −0.08 0.92 0.95 1.34 7.22 0.26 0.91

29 ENF CA‐Obs 11.7 0.69 0.46 4.64 20.7 0.69 0.43 1.89 0.94 1.01 −2.04 7.01 0.23 0.93

30 ENF CA‐Qfo −6.48 0.79 1.32 −3.51 17.4 0.56 0.33 2.87 0.80 0.95 −1.22 10.4 0.33 0.76

31 ENF CA‐SF −0.86 0.85 0.98 1.28 10.9 0.41 0.83 0.45 0.85 0.94 1.18 10.8 0.41 0.84

32 ENF CA‐TP3 −9.64 0.79 1.32 −3.89 24.4 0.58 0.32 2.30 0.81 0.95 −0.17 13.9 0.33 0.78

33 ENF CA‐TP4 −10.4 0.74 1.20 0.84 26.5 0.54 0.36 3.60 0.76 0.85 3.88 16.9 0.35 0.74

34 ENF CH‐Dav 14.4 0.84 0.86 −6.58 20.5 0.38 0.70 14.1 0.85 0.88 −7.63 20.1 0.37 0.71

35 ENF DE‐Obe 0.15 0.90 0.97 1.00 10.1 0.28 0.90 1.96 0.91 0.94 0.38 9.75 0.27 0.91

36 ENF FI‐Hyy −0.30 0.91 1.02 −0.15 8.92 0.31 0.90 2.06 0.92 0.93 −0.10 8.30 0.29 0.91

37 ENF FI‐Sod 6.87 0.68 0.73 −2.30 11.6 0.68 0.50 2.42 0.82 1.13 −4.63 9.14 0.53 0.69

38 ENF IT‐Lav −4.46 0.86 1.64 −25.2 22.8 0.49 0.13 7.45 0.86 1.19 −16.3 14.5 0.31 0.65

39 ENF US‐Blo 8.22 0.87 0.88 −1.08 16.0 0.26 0.83 6.23 0.88 0.94 −2.82 14.9 0.24 0.85

40 ENF US‐GLE 10.0 0.69 1.03 −11.51 19.3 0.40 0.33 13.4 0.70 0.94 −10.7 19.9 0.41 0.29

41 ENF US‐Me2 6.16 0.68 0.91 −2.10 18.8 0.41 0.55 7.41 0.73 0.93 −4.23 17.6 0.38 0.60

42 GRA CH‐Cha 10.9 0.95 0.94 −7.71 13.6 0.24 0.87 10.6 0.95 0.95 −8.01 13.5 0.24 0.87

43 GRA CH‐Fru 11.6 0.95 0.90 −6.67 14.3 0.29 0.84 9.79 0.95 0.98 −9.04 13.0 0.25 0.88

44 GRA DE‐Gri 11.4 0.93 0.80 −1.80 16.2 0.34 0.83 9.78 0.93 0.84 −2.27 14.6 0.31 0.86

45 GRA IT‐MBo 11.7 0.92 0.90 −7.51 16.2 0.37 0.84 10.8 0.92 0.93 −7.73 15.4 0.35 0.85

46 GRA SD‐Dem −1.86 0.97 0.84 6.79 7.05 0.23 0.95 0.27 0.96 0.74 7.89 9.83 0.32 0.91

47 GRA US‐Goo −4.12 0.94 1.09 −0.82 11.4 0.20 0.90 2.20 0.93 0.97 −0.26 9.66 0.17 0.93

48 GRA US‐IB2 12.0 0.92 0.74 5.15 20.5 0.31 0.83 10.1 0.93 0.78 4.37 18.2 0.28 0.86

49 GRA US‐Var −4.97 0.69 0.66 12.6 14.9 0.66 0.65 1.83 0.57 0.39 11.9 17.6 0.78 0.51

50 GRA US‐Wkg −2.47 0.91 0.86 5.67 7.71 0.34 0.90 −1.47 0.91 0.84 5.09 7.63 0.34 0.90

51 MF AT‐Neu 18.3 0.96 0.62 −0.70 26.6 0.58 0.70 16.6 0.96 0.65 −0.58 24.4 0.53 0.74

52 MF BE‐Bra −7.92 0.80 1.13 3.94 17.6 0.57 0.58 −0.35 0.80 0.89 3.90 12.2 0.39 0.80

53 MF CA‐Gro −0.99 0.93 1.01 0.50 9.45 0.25 0.92 1.27 0.94 0.97 −0.03 8.18 0.22 0.94

54 MF RU‐Fyo −4.61 0.88 1.13 0.36 14.7 0.46 0.79 1.64 0.90 0.92 1.05 10.1 0.32 0.90

55 MF US‐Syv 1.53 0.90 0.91 1.79 10.4 0.29 0.89 1.92 0.89 0.90 1.63 10.6 0.30 0.89

56 OSH Mx‐Lpa −48.7 0.15 0.53 58.9 51.0 2.33 −19.4 −0.59 0.34 0.48 11.9 9.66 0.44 0.27

57 OSH US‐Whs −7.17 0.93 0.88 9.78 9.50 0.44 0.82 −2.07 0.93 0.74 7.66 7.75 0.36 0.88

58 SAV AU‐DaP −13.8 0.93 0.71 31.0 20.6 0.35 0.78 −3.14 0.91 0.71 20.6 16.4 0.28 0.86

59 SAV ZA‐Kru −24.1 0.81 0.85 31.0 28.9 0.62 0.36 −3.38 0.83 0.68 18.2 16.5 0.35 0.79

60 SAV ZM‐Mon −12.7 0.96 1.08 7.39 15.0 0.23 0.78 −0.07 0.94 1.03 −2.23 8.53 0.13 0.93

61 CSH AU‐Cpr −14.0 0.66 0.91 16.4 16.8 0.59 −0.43 −0.36 0.70 0.57 12.6 7.98 0.28 0.68

62 CSH US‐Los −5.84 0.94 0.94 8.05 9.98 0.28 0.91 −2.01 0.95 0.88 6.34 8.14 0.23 0.94

63 WSA AU‐Dry −8.95 0.77 0.91 15.3 19.4 0.27 0.68 2.95 0.69 0.77 13.7 19.5 0.27 0.68

64 WSA ES‐LgS −11.7 0.65 1.26 2.42 25.2 0.70 −0.14 1.37 0.57 0.79 6.06 17.0 0.47 0.48

65 WSA US‐SRM 17.6 0.40 0.70 ‐3.62 24.0 0.52 0.81 16.5 0.42 0.72 ‐3.61 23.0 0.50 ‐0.29

Note. CRO: croplands; CSH: closed shrublands; DBF: deciduous broadleaf forests; EBF: evergreen broadleaf forests; ENF: evergreen needleleaf forests;
GRA: grasslands; MF: mixed forests; NSE: Nash–Sutcliffe efficiency; OSH open shrublands; PFT: plant functional type; RMSE: root‐mean‐square error;
RE: relative error; SAV: savannas; WSA: woody savannas.

The better value is highlighted in bond.
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relative narrow, indicating that information contained in observations

was sufficiently used by our set simulation approach to constrain the

model behaviour. Also, the medians of simulation sets are very similar

to that estimated by the original model at these sites. Thus, it seems

that the parameter uncertainties have less influence on the model's

ET partitioning, and very satisfactory estimations of ET partitioning

can be obtained by using the original model at these sites and PFTs

(Figures 11 and 12). On the contrary, the 90% CIs of the simulation

sets of ET partitioning showed relatively wider species‐ and PFT‐
variations for the ENF, OSH, SAV, CSH, and WSA biomes (Figures 11

and 12), indicating parameter uncertainties are large in these sites and

biomes. The ET partitioning estimated by the original model at some

sites of these biomes (i.e., CA‐Obs, CA‐TP3, CA‐TP4, FI‐Sod, IT‐Lav,

Mx‐Lpa, ZA‐Kru, AU‐Dry, and ES‐LgS) may be significantly different

from that estimated by the set simulation approach (i.e., fall out 50%

of CIs of simulation sets; Figure 11). Considering its relatively poor

performance at these sites, the ET partitioning by the original model

seemed to be unrealistic. Thus, special attention should be paid when



FIGURE 9 Comparison water fluxes of observed, original model [left panel: (a), (c), (e), (g), and (i)] and optimized model [right panel: (b), (d), (f), (h),
and (j)] in five different sites during the study period

FIGURE 10 Comparison water fluxes of observed, original model [left panel: (a), (c), (e), and (g)] and optimized model [right panel: (b), (d), (f), and
(h)] in four different sites during the study period

SU ET AL. 3917
using original model to partition ET over these biomes. Generally, the

ET partitioning patterns calculated by the set simulation approach

were in line with our intuitive expectation. For examples, the
transpiration was the dominant component of ET over forest biomes

with a PFT‐level median value of λEc/λET ranging from 0.49

(± 0.15 s. d.) for ENF to 0.59 ± 0.04 for DBF (Figure 12). Interestingly,



FIGURE 11 The posterior medians and 90% CIs of the simulation sets of ET partitioning across all site: (a) λEc/λET, (b) λEs/λET, and (c) λEi/λET.
The red cross symbol “×” indicates the partitioning results using the original model

FIGURE 12 Comparison of ET partitioning
at PFT level: (a) λEc/λET, (b) λEs/λET, and (c)

λEi/λET. The green bars represent the set
simulation approach and the red bars
represent the original model
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large species‐level variations in λEc/λET were found within ENF (from

0.28 ± 0.03 at CA‐TP4 to 0.79 ± 0.02 at IT‐Lav), whereas relatively

small species‐level variations were observed within DBF (from

0.52 ± 0.02 to 0.65 ± 0.03) and MF (from 0.44 ± 0.03 to

0.62 ± 0.01) biomes (Figure 11). Soil evaporation is a significant ET

component over CRO and OSH biomes with a PFT‐level median value

of 0.38 ± 0.07 and 0.41 ± 0.23, respectively (Figure 12). Canopy inter-

ception evaporation generally accounted for less than 30% of total ET

with a maximum value of 0.28 ± 0.12 for the EBF and a minimum

value of 0.03 ± 0.03 for OSH.
4 | DISCUSSION

4.1 | Simple vs hierarchical Bayesian approaches

Understanding the influence of model parameters on model response

is significant elements in the development of robust regional and

global ET products (Bastola, Murphy, & Sweeney, 2011; Brigode,

Oudin, & Perrin, 2013; McCabe et al., 2016; Zhang et al., 2017; Zhu

et al., 2014). Previous studies have shown that model parameters

may vary by PFTs and species because of the genetic or local
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environmental variation (Mu, Zhao, & Running, 2011; Wullschleger

et al., 2014). Thus, there is a need to simultaneously incorporate

species‐ and PFT‐level parameter variability into the procedures of

model calibration. The traditional SB approach fits the PT‐JPL model

on a site‐by‐site basis, and does not allow information to be

exchanged between sites (Zhang et al., 2017). It is therefore difficult

for the SB approach to simultaneously take the specie‐ and PFT‐level

variability into account. The failure to include a PFT‐level constraint

may also result in an overestimation of species‐level variability. In

addition, it attributes all uncertainties to the measurement errors

(Feng & Dietze, 2013). Thus, even small amounts of measurement

noise can cause significant errors in parameter estimation (Clark,

2005), especially for sites where the observation period is not long

enough. In this study, we illustrate how to optimize the ET model

parameters using the HB statistical methods that: (a) simultaneously

utilize the multi‐tower datasets. This ability enables the HB methods

to exchange information across different sites and minimize the limita-

tion of available data at some sites. Recently, Norros, Laine, Lignell,

and Thingstad (2017) compared the performance of the SB and HB

methods in estimating parameters of aquatic ecosystem models, and

proved that the HB method can obtain the most precise parameter

estimates due to its ability to combine information across different

datasets; (b) explicitly incorporate different sources of uncertainty. In

analyses across multiple levels, the uncertainty is partitioned and

attributed to specific drivers (such as observations and parameters),

which makes the HB methods are robust to measurement errors. In

our prior tests using synthetic data, we found that the parameters esti-

mated by the HB approach are very close to the actual values when

the standard deviation of measurement error varies from 5 to 30%

of the actual simulated values. Previous studies have illustrated that

the overall uncertainty in latent heat flux measurements is about

13% (Wang, Zhuang, Wang, Liu, & Xu, 2014). Thus, the effect of mea-

surement uncertainty plays a marginal role in identifying real‐world ET

model parameters for the HB method; (c) explicitly estimate parameter

variations at PFT level by accommodating the species‐level variability.

Thus, the HB method offers an efficient way for estimating the PFT‐

specific parameters for the PFT‐based models (discussed below).
4.2 | Parameter uncertainties and model
performance

In the PT‐JPL model, the three sensitive parameters (i.e., Topt, m1, β)

are closely related to different processes of ET. In particular, m1 deter-

mines the green canopy fraction. The larger m1 is, the higher the green

canopy fraction ( f g) is (Equation 8); Topt represents the optimum tem-

perature for transpiration at which plant stomata is fully open. When

air temperature is higher or lower than Topt, plants close their stomata

to prevent water loss through transpiration. β is the unique parameter

that influences the estimation of soil evaporation. The larger β is, the

higher soil evaporation rate is (Equation 7). Thus, parameters Topt

and m1 mainly influence the estimates of canopy transpiration,

whereas β influences the estimates of soil evaporation. To properly

estimate the ET and its different components, it is important to get

the robust values of the sensitive parameters over different biomes
and climate conditions. Unique to the HB method is its ability to com-

bine multi‐tower FLUXNET datasets in a single analysis and simulta-

neously estimate species‐ and PFT‐level parameters. Results for our

HB approach illustrated that parameter Topt varied considerably on

both a species and PFT level (Figures 4 and 5). Across PFT, the poste-

rior estimations of Topt varied from 12.5 (MF) to 29.7°C (SAV; Figure 5

; Table S3), which reflects different PFTs may have developed geno-

typic adjustments to their evolutionary temperature environment

(Niinemets, Oja, & Kull, 1999). Also, this result provided good support

for previous study that optimum air temperature for canopy carbon

flux varied from 7.5 to 30°C for different PFTs (Baldocchi et al.,

2001, 2001). Thus, it seems to be unreasonable to fix Topt to be

25°C across different PFTs for some global modelling studies (García

et al., 2013; Yao et al., 2014; Yuan et al., 2010). Within a PFT, the pos-

terior median estimations of Topt varied substantially from species to

species (Figure 4), and were highly correlated with growing mean

annual temperature (Figure 7a), indicating a species‐specific adapta-

tion to local environmental conditions. This also confirmed the non-

trivial amount of site‐to‐site variation of Topt in our previous studies

(Zhang et al., 2017), though as discussed above the SB approach likely

overestimated the species‐level variability. Indeed, the species‐level

variations within the ENF and MF biomes estimated by the HB

approach were less than that obtained by the SB approach

(Figure 4). Notably, the dynamic method used in the original model is

prone to produce unrealistic estimations of Topt. at two sites (CA‐

Obs and FI‐Sod) of the ENF biomes because the product of the two

negative meteorological variables (i.e., radiation and temperature) is

highest in winter at these sites. Improper estimates of Topt by the

dynamic method were also observed in Mediterranean semiarid envi-

ronments where the maximum peak for vegetation activity occurred in

late winter (García et al., 2013). Thus, the established relationship

between Topt and mean annual temperature provides a convenient

way to generate reliable ET estimations by using the PT‐JPL model.

The estimates of m1 were well informed by the multi‐tower

datasets at both a species and PFT level, which was demonstrated by

a narrow CIs and posterior means that were quite different from the

corresponding prior means (Figures 4 and 5). Across PFT, the estimates

of m1 for ENF (0.41), MF (0.44), and SAV (0.88) were relatively low

(Figure 5; Table S3), which might be caused by their canopy heteroge-

neity. In the remaining PFTs, the posterior median values of m1 ranged

from 1.09 to 1.38, and were close to the default value (1.36) of the orig-

inal PT‐JPLmodel. Thus, the empirical relationships between f APAR and

vegetation index (i.e., EVI and NDVI) may be variable for different PFTs

(Rautiainen et al., 2010). For example, Ogutu and Dash (2013) reported

that f APAR was positively correlated with EVI for the Harvard decidu-

ous broadleaf forest and the Mead irrigated cropland, and the value

of m1 for these two sites was 1.67 and 2.27, respectively. Within a

PFT, the posterior median estimates of m1 showed relatively less

species‐level variations for CRO, DBF and EBF. However, considerable

species‐level variations were observed for the remaining PFTs, indicat-

ing f APAR retrieval may be sensitive to local environmental conditions

(i.e., soil reflectance, nonphotosynthetic plant components, and atmo-

spheric conditions). Until now, accurately estimating f APAR is still a

challenge (Xiao et al., 2004), and more studies are needed to better

understand and quantify the relationship between f APAR and
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satellite‐derived vegetation indices (e.g., EVI, NDVI) across leaf, species,

and PFT levels (Rautiainen et al., 2010).

The posterior median estimations of β at the species and the PFT

level ranged from 0.20 to 0.95 and 0.20 to 0.81, respectively, which

were all lower than the default value (1.0) of the original model. In

the PT‐JPL model, β is a unique parameter that influences the estima-

tion of soil evaporation. It has been well documented that the default

value of β (= 1) tends to overestimate soil evaporation in arid regions

(García et al., 2013; Zhu et al., 2016; Zhang et al., 2017). For a global

application, Mu, Heinsch, Zhao, and Running (2007); Mu et al. (2011)

set the value of β to be 0.1 and 0.2 kPa in the old and revised

MODIS16 algorithm, respectively. In addition, it should be noted that

β exhibited the most wide posterior distributions among the three

sensitive parameters (Figures 4 and 5). This indicates that the param-

eterization of soil moisture constraint f sm (Equation 7), which is built

based on the link between atmospheric water deficit (VPD and RH)

and soil moisture, may be problematic. Recently, Novick et al. (2016)

reported that the correlation coefficients between atmospheric water

deficit and soil moisture are relative low at monthly scale across 38

Ameriflux sites, ranging from 0 to 0.54 with a mean of 0.20. Thus, it

seems that the vertical adjacent atmosphere is not necessary in equi-

librium with the underlying soil, and the link may tend to be

decoupled. García et al. (2013) have proposed to parameterize f sm

using apparent thermal inertia (ATI) to improve model performance

in arid regions. Alternatively, a promising scheme for parameterizing

soil moisture constraint is to formulate f sm directly based on surface

soil moisture (Fisher et al., 2008), which now can be easily obtained

by ground instruments, remote sensing techniques and models.
4.3 | ET partitioning

The parameters in the PT‐JPL model are found to be highly correlated

and can trade off. That is, very different combination of the parameter

values (“trade‐off” between the parameters) can make the model

generate similar total ET predictions, but with great uncertainties in the

model's ET partitioning. This phenomenon is well known as equifinality

or parameter identifiability (Beven & Freer, 2001; Zhu et al., 2014,

2018). Thus, we cannot ensure the model's ET partitioning based on a

single set of optimized parameters to be correct, even though the simu-

lated total ET were in good agreement with measurements. The set sim-

ulation approach proposed here provides us the opportunity to estimate

the posterior distributions of the model's ET partitioning.

Based on the set simulation approach, the values of λEc/λET ranged

from 0.43 (± 0.07 s. d.; CRO) to 0.72 ± 0.29 (WSA) with a mean of

0.53 ± 0.10 (Figure 12). These results are nearly within the scope of pre-

vious studies (Lawrence et al., 2007; Miralles, Gash, Holmes, De Jeu, &

Dolman, 2010; Schlesinger & Jasechko, 2014; Coenders‐Gerrits et al.,

2014; Maxwell & Condon, 2016). For example, Schlesinger and

Jasechko (2014) compiled 81 studies that partitioned ET into transpira-

tion and evaporation (ignoring canopy interception), and indicated that

transpiration accounted for 61% (± 15%) of ET with highest in tropical

rainforests (70 ± 14%) and lowest in steppes, shrublands, and deserts

(51 ± 15%). Maxwell and Condon (2016) found transpiration accounts

from 47 ± 13% to 62 ± 12% of ET after considering the influence of
lateral ground water flow on ET partitioning. However, relative higher

transpiration ratios were obtained by using the isotope mass balance

method. Jasechko et al. (2013) reported that transpiration could

account for nearly 80–90% of the total ET from continents. This finding

was criticized for overestimating the contribution of plant transpiration

and underestimating data uncertainties (Coenders‐Gerrits et al., 2014).

After counting the input data uncertainties, Coenders‐Gerrits et al.

(2014) argued the transpiration portion of ET to be lower, at 35–80%.

For other components, we found the values of λEs/λET ranged from

0.20 ± 0.03 (EBF) to 0.41 ± 0.23 (OSH) with a mean of 0.28 ± 0.11

(Figure 12). Previous studies on contributions of soil evaporation to

total ET mainly focused on croplands for better irrigation management

practices, and results suggest that soil evaporation accounts for 20–

40% of ET (Kool et al., 2014). This is generally consistent with our esti-

mations for croplands ranging from 0.3 to 0.52 with a mean of 0.38

(Figure 11). Until now, direct observations on the contributions of can-

opy loss to total ET across different biomes are still relative sparse

(Miralles et al., 2010), and estimations were mainly derived from model

simulation. For example, Lawrence et al. (2007) used a modified Com-

munity Land Model version 3 (CLM3) to simulate the ET partitioning,

and reported that intercept loss accounts for 17% of total ET over the

global land surface. According to our results, the values for λEi/

λETranged from 0.08 ± 0.06 (WSA) to 0.28 ± 0.12 (EBF) with a mean

of 0.18 ± 0.06, which is similar to that reported by Lawrence et al.

(2007). Although the comparisons were relatively rough, the results

indicated that the PT‐JPL model can be used to partition ET at ecosys-

tem scale after carefully considering the parameter uncertainties. Nota-

bly, our synthetic test also indicated that the partitioning results can be

further improved by using two type data (Figure S2). Unfortunately,

direct observations of different components of ET are still not accessi-

ble at most FLUXNET sites at present (Kool et al., 2014). Thus, a major

step forwards should be made to extract direct observations of differ-

ent components of ET at FLUXNET sites using new observation tech-

nologies, such as environmental stable isotope (δ2H and δ18O), sap

flow, and lysimeter (Kool et al., 2014), and systematic assessments

the extent to which the uncertainty in model parameters and predic-

tions is reduced by the use of additional data are needed in the future

studies.
4.4 | Potential applications of the HB approach

Now, the PFT concept offers a tractable scheme to describe the

landscape, and is well integrated into dynamic vegetation models

[i.e., LPJ‐DGVM (Sitch et al., 2003); BIOME4 (Kaplan et al., 2003);

CLM4.5 (Oleson et al., 2013); ORCHIDEE (Krinner et al., 2005)] and

some remote sensing based ET models [i.e., MODIS16 algorithm (Mu

et al., 2011); P‐LSH model (Zhang et al., 2009)]. Most current models

use PFT‐specific constant parameter values for regional or global

applications (Wullschleger et al., 2014), and not accounting for

species‐level variation within PFTs. However, results from our HB

approach demonstrated that variation of parameters at species level

was also significant in comparison with the PFT‐level variation

(Figures. 5 and 6). This highlights the potential importance of account-

ing for species‐level variability into models in order to obtain credible
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predictions. Indeed, it has been well documented that the variation in

plant traits related to carbon, water, and nutrient cycling is large within

PFTs and often even greater than the difference in means among PFTs

(Laughlin, Leppert, Moore, & Sieg, 2010; Wright et al., 2005). Also, this

study indicates that the PFT‐level parameter estimates and their asso-

ciated uncertainties may be compromised if variability among species

is ignored. Thus, it is important to account for species‐level variation

to obtain proper estimates of PFT‐level parameters. The method

presented here provides a consistent framework to obtain proper

PFT‐level parameter estimations by accommodating the species‐level

variability. In future studies, we will apply the HB approach on the

PFT‐based models to obtain a new set of PFT‐specific parameters

for the models, and evaluate to what extent the model performance

can be improved by the new set of parameters.
5 | CONCLUSIONS

With the increased application of process‐based ET model in multiple

research areas, there is an urgent need for methods extracting empir-

ically and theoretically sound parameter values that provide realistic

ET predictions and partitioning estimates. The HB method presented

herein allowed us to rigorously fit fairly complicated ET models to

multi‐tower FLUXNET data via a population‐based Monte Carlo algo-

rithm that: (a) simultaneously analysed the multi‐tower data sources

that informed the same underlying ET processes; (b) explicitly

accounted for different sources of uncertainty; and (c) simultaneously

estimated species‐ and PFT‐level parameters. As such, the HB method

can efficiently identify the parameters and obtain realistic estimating

in model's ET partitioning. However, strict validation of the model's

ET partitioning is not still possible because the required observations

do not exist. Therefore, a major step forwards should be made to

extract direct observations of different ET components at FLUXNET

sites with the development of new observation technologies (i.e., sap

flow, lysimeter, and environmental stable isotope). In addition, further

analysis is needed to address the model structure uncertainty. This is

beyond the scope of current paper, and we will consider using multiple

different ET models to reduce the uncertainty caused by the model

structure in future studies.
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